top of page

3.2.3 Мощность трехфазной цепи

 

Активная мощность трехфазной цепи при несимметричной нагрузке фаз равна арифметической сумме активных мощностей отдельных фаз:

Screenshot_26.jpg

Реактивная мощность равна алгебраической сумме реактив­ных мощностей отдельных фаз, так как реактивная мощность индуктивной нагрузки берется со знаком плюс, а емкостной — со знаком минус:

Screenshot_27.jpg

При симметричной нагрузке трехфазной цепи активные мощности фаз равны между собой. Следовательно, активная мощ­ность трехфазного приемника при симметричной нагрузке выра­зится формулой:

Screenshot_28.jpg

Выразив фазные значения тока и напряжения через линей­ные, получим общую для соединения звездой и треугольником формулу мощности трехфазного приемника при симметричной нагрузке:

4.12.jpg
4.12-1.jpg
4.12-2.jpg

где для соединения фазных нагрузок звездой 

 

для соединения треугольником 

Обычно индексы при I и U не ставятся, и формула мощности трехфазной цепи при симметричной нагрузке записывается в виде

4.12-3.jpg

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

где      — угол сдвига фаз между фазным током и напряжением.

Аналогично запишутся формулы реактивной и общей (кажущейся) мощности трехфазной цепи:

Screenshot_21.jpg
4.13.jpg

(3.2.13)

Линейный ток при соединении нагрузок треугольником в 3 раза больше линейного тока при соедине­нии звездой, следовательно, и мощ­ность трехфазного тока при соедине­нии нагрузки треугольником в 3 раза больше, чем при соединении нагрузки звездой.

Вопросы для самоконтроля

1. Как определяется мощность трёхфазной сети при несимметричной

нагрузке?

2. Какое условие выполняется для активной и реактивной мощности

трёхфазной сети и не выполняется для полной мощности?

3. Какими величинами нужно воспользоваться для вычисления мощности, чтобы выражения не зависели от схемы соединения симметричной нагрузки?

bottom of page